Changing the Default Tizen 5.0 Project for Samsung TVs

Tizen-Pinwheel-On-Light-RGB

When using Tizen Studio if you start a project from one of the templates for a TV you may find that the project won’t deploy to a Samsung Consumer TV. There are a couple of changes that can be made to take care of this.

One is to edit the config.xml. There are a couple of lines in it to be changed. There is an element named tizen:profile with a name attribute of “tv”. Change this to “tv-samsung”. The other is in a file that isn’t listed by the IDE named “.tproject”.  Under the Platform element is a text value of “tv-5.0”. Change this to “tv-samsung-5.0”. I’ve found that even on a TV running Tizen 4.0 that these changes are sufficient to work. Just don’t use any Tizen 5.0 features on a display that is running an older OS.

Related: Developing for older Samsung TVs

 

 

Using WITS for Samsung/Tizen TV Development

 

One of the development scenarios that makes me cringe is an environment in which the steps and time from changing a line of code to seeing its effect is high. This usually happens in an environment with specialized hardware, limited licenses, or sensitive configurations leading to the development machine (as in the machine on which code is edited) is not suitable or capable of running the code that has been written.  There is sometimes some aspect of this in cross platform development. While emulators are often helpful in reducing this, they are not always a suitable solution since emulators don’t emulate 100% of the target platform’s functionality.

When developing for TVs running Tizen(which will be more than just Samsung TVs) Samsung has made available a tool to reduce the cycles from changing code to seeing it run through a tool called WITS.

Setting up WITS

To Setup WITS first you need to have already installed and configured Tizen Studio and Node. The system’s PATH variable must also include the path to tizen-studio/tools and tizen-studio/tools/ide/bin (you’ll need to complete those paths according to the location at which you’ve installed Tizen Studio).  You’ll also need to already have a certificate profile defined for your TV.

The files that you need for WITS are hosted on git. Clone the files onto your machine.

git clone https://github.com/Samsung/Wits.git

Enter the Wits folder and install the node dependencies

cd Wits
npm install

Next the folder there is a file named profileInfo.json. The contents of the file must be updated to point to your profiles.xml for your certificate and the name of the certificate profile to use. Windows users, note that when ever you enter a path for Wits you will need to use forward slashes (/), not back slashes (\).  For my installation the updated file looks like the following.

{
  "name": "TizenTVTest2",
  "path": "C:/shares/sdks/tizen/tizen-studio-data/profile/profiles.xml"
}

 

Configuring Wits to Use Your Project

Wits needs to know the location of your project. Open connectionInfo.json. There is an array element named baseAppPaths. Enter the path to your Tizen application here.  If you would like to make things convinent within this file also set the “ip” element to the IP address of the TV you are targeting. This isn’t necessary since you will be prompted for it when running a program. But it will default to the value that you enter here.

Running your Project

From the command prompt while in the Wits directory use npm to start the project

npm start

You will be prompted for a number of items. The default values for these items comes from the connectionInfo.json file that you modified in the previous section. You should be able to press enter without changing the values of any of these elements.

PS C:\shares\projects\j2inet\witsTest\Wits> npm start

> Wits@1.0.0 start C:\shares\projects\j2inet\witsTest\Wits
> node app.js

Start Wits............
? Input your Application Path : C:/shares/projects/j2inet/MastercardController/workspace/SystemInfo2
? Input your Application width (1920 or 1280) : 1920
? Input your TV Ip address(If using Emulator, input 0.0.0.0) : 10.11.86.62
? Input your port number : 8498
? Do you want to launch with chrome DevTools? : Yes

 

A few moments later you’ll see your project running on the TV.

Deploying File Changes

This is where Wits is extremely convenient. If you make a change to a file the application will automatically update on the TV. There’s nothing you need to do. Wits will watch the project for changes and react to them automatically!

Connecting Windows 10 IoT Core to a Hidden Network

For some odd reason while Windows 10 IoT core has the capability to connect it to hidden networks it doesn’t expose this capability in its UI. Given it’s target audience I to some degree can understand it not having some of the same features to guide a user through getting connected to a hidden network while at the same time seeing this as an inconvenience.

Isn’t It Easier to Unhide the Network

No, at least not when you have no control over the network. There’s an argument to be made on why hiding a network is not an effective security action. Whether those arguments fail or make great points is irrelevant in environments where you personally have no control or influence on the network.

There Are Several Ways to Connect. Which Should I Use?

I found a few solutions to this problem. But I’m only presenting the one that I found to be satisficing.  The method requires that the IoT device be first connected to a wired network first.

On a computer (as in your laptop or desktop) that already has a connection to the wireless network export the wireless profile. Copy this to the the Windows 10 IoT device and the import the profile. Let’s talk about how to do each one of those steps.

Exporting Your Wireless Profile

On your computer that has a connection to the wireless network open a powershell instance.  use the following command to export your wireless profile.

netsh wlan export profile name=

Here substitute the name of your wireless profile in for the last parameter (without the brackets).  This will be the same name that shows up in the Windows Network settings for the network that you are connected to.  When you press enter netsh will create an XML file with the wireless profile. Take note of the location where it was saved.

Copying the Profile to the Windows 10 IoT Device

One of the convinent things about Windows 10 IoT core is it has many of the behaviours that the Windows Desktop has. This includes the ability to read and write from the file system over the network. Connect your Windows 10 IoT device to a wired network and take note of the IP address that is assigned to it. In the Windows File Explorer on your desktop enter the following

\\\c$

You will be prompted to enter the username/password of the machine. The user name is Administrator. The password in the past has defauled to p@ssw0rd. But you might have specified a different password at setup. Once authenticated you’ll see the file system for the device. Copy that XML file over.

Importing the Wireless Profile

Open a Powershell instance to the Raspberry Pi. The easiest way to do this is to use the Windows 10 IoT Dashboard. Under “My devices” you should see your device listed. Right-click on it and select “Launch PowerShell”.

IoTLaunchPowershell

Once in PowerShell navigate to the directory in which you saved the XML profile. Use netsh to import it.

netsh add profile filename=

After entering this command and pressing enter the device will now be aware of the network. From the UI on the device if you go into the Network settings you can now select that hidden network. It will prompt you for the password and you’ll be connected.

Related Affiliate Links

Windows 10 for the Internet of Thing, Book

Dragonboard 410c, A tiny board compatible with Windows 10 IoT with integrated GPS

Minnowboard Turbot, another Windows 10 IoT Compatible board

Raspberry Pi Starter Kit

TypeScript in Tizen

I was writing a program to run on my television and encountered a scenario that I’ve encountered many times before; an HTML enabled device supports a JavaScript standard that is older than the one that I would like to use. The easiest workaround for this is to use a tool that will compile from a more recent version of JavaScript (or something similar) back to the version that is supported by the hardware. This is something I’ve done when developing for BrightSign and other devices.

For targeting the Tizen based Television I decided that I would use TypeScript to accomplish this; in addition to getting access to some more recent features that can be found in JavaScript there’s we also get type checking.

A bit of work was required to get this working though. On my first attempt I tried includint the TypeScript files in the same folder as the project. This doesn’t work;when the project is being compiled the compiler will try to take these files and package them in the solution. This isn’t something that we want to happen. It’s necessary to have these files in a folder that is outside of the project folder to prevent this from happening. I moved the files and made a TypeScript configuration file that specified the destination to which I wanted the resulting JavaScript files moved.

{
  "compilerOptions": {
    /* Basic Options */
    "target": "es2015",
    "module": "commonjs",  
    "sourceMap": false,   
    "outDir": "../tizenWorkspace/projectName/js"
    "strict": true,                           
    "noImplicitAny": true,                 
  }
}

This almost works. The next problem encountered is that when there is a reference to anything on the tizen object the compiler will complain about it net having been declared. The tizen object, not being a web standard object, is not something that is recognized by the compiler. There are two ways to handle this project. A work around would be to declare the tizen object as being of type any. With this declaration the compiler will just ignore what ever we do with the object and not complain.

I made a TypeScript definition file named tizen.d.ts in which to place my definitions. TypeScript already has an understanding of the interface provided by the Window object. To augment this I declare another interface that will be merged with the understanding that TypeScript has and added a definition for the tizen member there.

declare	interface Window {  tizen:any }

That works, but that’s also eliminating some of the type safety features that that TypeScript has to offer. Instead of working around the problem I wanted to address it. I wanted to provide the type definitions for the Tizen object.

There’s a project called Definitely Typed in which contributors make TypeScript definitions that can be downloaded and shared to other developers that are targeting the same environment. At first glance there appears to be existing entries for targeting Tizen within the collection. But upon further inspection it turns out that the definitions that are there (at the time of the writing of this post) are for targeting a cross development tool that also supports Tizen. that’s not what I needed. Instead of relying on community provided definitions I’ll have to make my own. When I’m done though I may have a definition file that could be shared through Definitely Typed. Since that repository is constantly being updated I would encourage seeing what it has to offer before using the code that I provide here.

declare	interface Window {  tizen:ApplicationManager}

This is when I start my descent down the rabbit hole. To define the ApplicationManager interface that is implemented by the tizen object there are a number of other interfaces that must be defined. Those interfaces have dependencies on other interfaces.

The interfaces for the various objects are documented and can be found on a Tizen.org page. Browsing through it there are some types mentioned that ultimately are strings of some type of another. Within TypeScript we can make a declaration that is similar to a typedef for equating some custom type to another.

type ApplicationId = string;
type ApplicationContextId = string;
type PackageId = string;

There is also a frequently used callback type for successes and errors of callbacks. The links to the documentation for the functions’ call signatures are broken taking me to a 404 page. I was more generic with defining these in my type definitions until I can get the specifics of the actual accepted call signatures.

type SuccessCallback = (...args: any[]) => void;
type ErrorCallback = (...args: any[]) => void;

The rest of the definitions are interfaces and follow the same patterns. I’m showing a few of the interfaces closer to the root of the definitions.

declare	interface Window {  tizen:ApplicationManager}
declare var tizen:tizenInterface;

interface tizenInterface {
    application:ApplicationManager;
}

interface ApplicationManager { 
    getCurrentApplication():Application;

    kill(contextId:string,
              successCallback:SuccessCallback,
              errorCallback:ErrorCallback):void ;

    launch( id:string, //ApplicationId
                successCallback:SuccessCallback,
                errorCallback:ErrorCallback):void;
    launchAppControl(appControl:ApplicationControl,
                        id?:ApplicationId, //ApplicationId
                          successCallback?:SuccessCallback,
                          errorCallback?:ErrorCallback,
                          replyCallback?:ApplicationControlDataArrayReplyCallback):void ;
     findAppControl(appControl:ApplicationControl,
                        successCallback:FindAppControlSuccessCallback,
                        errorCallback:ErrorCallback):void;

    getAppsContext(successCallback:ApplicationContextArraySuccessCallback,
                        errorCallback:ErrorCallback):void ;
    getAppContext(contextId:string):ApplicationContext;
    getAppsInfo(successCallback:ApplicationInformationArraySuccessCallback,
                     errorCallback?:ErrorCallback):void;
    getAppInfo(id?:ApplicationId ):ApplicationInformation;
    getAppCerts(id?:ApplicationId ):Array;
    getAppSharedURI(id?:ApplicationId ):string;
    getAppMetaData(id?:ApplicationId ):Array;
    addAppInfoEventListener(eventCallback:ApplicationInformationEventCallback):number;
    removeAppInfoEventListener( watchId:number):void ;    
}

There are a lot more objects that could be defined for Tizen. If you’ve come along this article checkout the DefinitelyType archives first. If you don’t find Tizen devinitions there you can download the version of the video that I have from here.

PWAs Available in the Galaxy Store

The Galaxy Store for Samsung Devices now supports Progressive Web Apps; your progressive applications can be listed there.  In the Galaxy Store App if you navigate to My Apps->Web Apps you can see the PWAs that are presently available.  But why target PWAs?

SamsungPWA

Progress web applications have a advantages over native apps. They can run on a variety of operating systems. PWAs tend to be smaller and the installation process is simple. Updates to a PWA can be deployed much faster than a conventional application since updates don’t need to go through an application store. Because of the sandbox in which most browsers run PWA applications have much lower potential for exploiting someone’s computing device.

A license agreement is a basic requirement. You need to own the app and give Samsung permission to have the app listed in their store. While this is a work in progress it is something that is available today; though presently the process is of enrolling an application is manual. You would need to e-mail pwasupport{-at-}samsung.com (replace the {-at-} with an @. I don’t list e-mail address plainly as not to feed to spam bots). Someone will review your web application and assist with getting the application listed.

What is .Net

.NetFramework

I have some .Net related content that I plan to post and thought that I would revisit this question.

It’s a question I find interesting in that the answer has changed slightly over the year. In the earliest years it was a branding for technologies that were not necessarily related to each other; Windows .NET Server and Windows .NET Messenger are two products that had the branding at one point. But let’s not walk down memory lane and jump straight into the answer.

.NET is still a branding but the technologies with the branding are related to each other. Microsoft uses the branding on their Common Language Runtime (CLR) products. That answer only has kicked the can down the road. What is the CLR?

The CLR is a virtual machine component. Executables targeting the CLR don’t necessarily contain any code that is native to the processor on which they are running (though it may contain native code, but let’s ignore that for a moment). CLR binaries can be distributed with no processor dependent executable code within them. At runtime when the code is being executed it is converted to machine code as needed. Because of this the same program can be run on machines that have different processor architectures. The computer on which a program is running needs to have the runtime that is specific to it’s architecture and operating system.

This system might sound familiar as modern Java does something similar. There was a time when Microsoft was invested in Java virtual machines and made the first Java runtime that compiled the Java binary to machine language. The entity that owned Java at the time (Sun) wasn’t happy about this and they took Microsoft to court for deviating from the standard of how Java virtual machines worked and for using the Internet as a method of distribution among other reasons. This disagreement might sound petty, and in part it was. But there were good reasons for their position that I’ll present in another post. But this interaction added weight to the argument that Microsoft should have their own virtual machine. They also made their own programming languages (C# and Visual Basic .NET) and a few CLRs for x86, x64, and for their mobile devices.

The CLR, also known as the .Net Framework has seen several updates over the years. Microsoft eventually decided to make the CLR open source. This contributed to another CLR implementation being created named Mono which allowed .Net Framework applications to run on Linux and Mac.

If you look up .Net now you’ll find a few .NET systems listed.

  • .Net Standard
  • .Net Core (2016)
  • .Net Framework (2002)
  • ASP.Net / ASP.Net Core

What are these?

.Net Standard is a specification of the set of APIs that are expected to be in all implementations of the .Net Framework. Think of this as analogous to an interface; .NET standard itself isn’t an implementation. If you make an application that sticks with these APIs then it will have a wide range of compatible targets.

For the .Net Framework only one version of the framework can be installed at a time. Microsoft generally kept backwards compatibility, but it wasn’t perfect. Since a system could only have one version of the Framework installed in corporations updating the Framework had to be a company level decision.

.Net Core was made to contain the most common features of the .Net Framework, but has a few new features installed. It was made with multiple operating systems in mind and multiple versions in mind.  A system can have multiple versions of .Net core installed and they can run side-by-side.  From hereon Microsoft will be putting efforts on improving .Net Core. The .Net Framework will continue to support the .Net Framework but don’t expect to see new features in it; the new features will be coming to .Net core. There are a lot of legacy functionality from the .Net Framework that did not get ported over to .Net core in the interest of performance and compatibility.

ASP (Active Server Pages) is the name for Microsoft’s Web development system. Some of the earlier versions used a language that was similar to Visual Basic (yuck). The first version of ASP that supported .NET was called ASP.NET. ASP.NET used the .Net runtime and the more recent version supports the .NET Core runtime.  Traditionally ASP pages were hosted within IIS (Internet Information Services), a Windows component for hosting web pages. Wit the modern versions while this is still an option ASP.NET pages can be hosted outside of IIS too.

If you are starting a new desktop .Net project and don’t know what version to use the safe choice will generally be .Net Core. In my opinion the best feature is its ability to run on multiple systems (Mac, Linux, Windows, and varios IoT devices including the Raspberry Pi).

 

Trying to learn C# and .Net Core? This is a book I would recomend.